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Abstract. We apply a linearization technique for nonconvex quadratic problems with box con-
straints. We show that cutting plane algorithms can be designed to solve the equivalent problems
which minimize a linear function over a convex region. We propose several classes of valid inequali-
ties of the convex region which are closely related to the Boolean quadric polytope. We also describe
heuristic procedures for generating cutting planes. Results of preliminary computational experiments
show that our inequalities generate a polytope which is a fairly tight approximation of the convex
region.
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1. Introduction

We consider the following nonconvex quadratic programming problem with box
constraints:

Minimize f(x) =xTQ0x +c'x
(P)| Subjectto 0<x; <1, i=12....n. (1)

wherex” = (x1, x, ... , x,) is a variable vector of size, Q is a symmetria: x n
matrix, andc is a vector of size. If f is a convex function, problerfP) is an easy
convex minimization problem, and a lot of standard convex nonlinear algorithms
can be applied for solvingP). Also, if f is a concave function, i.e., matriQ

is negative semidefinite, it is well known that problé®) has a globally optimal
solution at an extreme point of box constraints. Problgh is, in the concave
case, equivalent to the following quadratic zero-one program:

Minimize x7Qx +c’x
Q) | supjectto x (0.1}, i=12 ....n. 2)

Many methods have been proposed for solMih@). Among them are branch
and bound algorithms [14, 17], linear relaxation methods and/or cutting plane
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methods for solving equivalent linear zero-one integer programs or max-cut prob-
lems [2, 5, 16], eigenvalue methods [9, 19], and semidefinite relaxation methods
[13].

In this article, we consider the proble®) when Q is indefinite. From the
complexity point of view, the problem is NP-hard [18]. Thus, it seems that the
problem is one of the simplest but the toughest global optimization problems.

Several methods, in the indefinite case, have been proposed. Coleman and Hul-
bert [7] proposed an efficient algorithm for obtaining a local optimal solution of
the problems. Also, several polynomial time algorithms have been proposed by
Vavasis [26] and Ye [27] for obtaining approximate solutions. Hansen et al. [11]
proposed necessary conditions for optimality (&). They also proposed some
kind of active set strategy and solved the problem optimally by branch and bound
methods. Other algorithms can be found in the recent survey of De Angelis et al.
[8] and references therein.

We will propose a polyhedral approach which is closely related tolithe
earization techniqugroposed by Padberg [16] for solvind Q). He linearizes
the quadratic terms;x; by introducing new variables

yij = xixj, forall 1<i<j<n. (3

It is easy to verify that problend/ Q) is equivalently reduced into the following
linear zero-one integer programming problem:

Minimize 22 Qijyij +CTX
i<j
Subjectto y; <xi, vy <x;, x+x;—1<yy, 4)
x;€{0,1}, i=12,...,n,
yij €{0,1}, forall 1<i<j<n,

where Q;; is a (i, j)-element of matrixQ. We note thate? = x; if x; € {0, 1}.
Therefore, without loss of generality, we can replace the quadratic termith
x;foralli =1,2,...,n, and assume be a zero-diagonal matrix. He considers
the convex hull of zero-one vectors satisfying the constraints of (4), i.e.,
conv{(x,y) € R" x R™7" |x; €{0,1}, yij =x;x; forall 1<i < j<n}.

(®)

Padberg calls this the Boolean quadric polytope (BQP) and proposes three families
of facets, named the clique-inequality, the cut-inequality and the generalized cut
inequality. Also, Simone [25] shows that the BQP is the image of the cut polytope
(CP) defined by [3], and that the polyhedral structure of CP can be easily reduced
to those of BQP. See also [5, 6] for further details.

In this article, we will apply the same linearizing technique to the case wigen
are continuous between 0 andTb linearize the problem, we will also introduce
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new variables
Yij = XiXj, forall1<i < j < n, (6)

and consider the s P and its convex hulp P¢ defined below:

n(n+1)

OP={(x,y)eR"xR 2 |0<x; <1, yjj=x;x; forall 1<i<j<n},

()

QP€ = conv{ QP ). (8)

Here, the difference betweadP¢ and BQP must be noted. Firstig P has
additional variables;; (i = 1,2, ..., n) which correspond tml?. Sincex; takes an
arbitrary value between 0 and:& can not be replaced hy. Secondly,Q P€ is not
a polyhedral set any longer. Vertices @P¢ consist of not only 0-1 vertices but
also non-integer vertices. However, ignoring these additional varighlesny 0—1
vertices ofQ P¢ are identical to those of BQR P€ can be viewed as a continuous
generalization of BQP.

In a series of articles [21, 22, 24], Sherali et al. developed the same linearization
method for solving general nonconvex quadratic programming problems. Their
idea can be viewed as a technique for approximafd® They take all possible
pairwise products of the original inequalities

xi>oa i=1,2,...,n
—xi>-1 i=12...,n, 9

and generate the following linear inequalities

xi+x; — 1<y, (10)
0 < yijs (11)

Yij < Xi, (12)

Yij < Xj, (13)

by replacing the quadratic termx; with y;; forall 1 <i < j < n. Let us define
OP° = {(x, y)| (x, y) satisfies (9) through (1R)
and consider the following linear programming problem:
Minimize {2~ Qyyij + D Quivii + x| (x,y) € QPO ¢, (14)
i<j i=1

whereQ;; is a(i, j) element of matrixQ. SinceQ P° > Q P, linear programming
problem (14) gives a lower bound foP).
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Recently, some authors [10, 20] propose semidefinite relaxations for general
nonconvex quadratic problems. Let us denote the positive semidefiniteness of a
matrix A by A > 0. They approximate (6) by the positive semidefinite condition
Y —xx > 0, or equivalently,

R as)

whereY is a symmetric matrix with elements;. Therefore, a lower bound f@P)
is obtained by solving the semidefinite programming problem:

Minimize § 2" Qi + Y Quyii +¢" x| (x,y) € QPSP 1 (16)
i<j i=1
where
OPSP? = 9PN {(x, y) | (x, y) satisfies (15) 17)

Many algorithms [1, 12, 15, etc.] have been proposed for solving (16).

In this article, we will propose several classes of valid linear inequalities of
Q P. It will be shown that a polytope defined by our inequalities is tighter than that
defined by (9) through (13). We also propose cutting plane algorithms employing
these inequalities as cutting planes. The article is organized as follows. In Section
2, we introduce notation and some basic results. Section 3 is devoted to propose
several classes of valid inequalities@®. We also show that these inequalities are
closely related to the facets of BQP as well as the positive semidefinite inequality
(15). In Section 4, we describe cutting plane algorithms for solyihg We also
describe heuristic procedures for generating cutting planes. Results of preliminary
computational experiments show that our inequalities generate a polytope which is
a fairly nice approximation o P.

2. Basic results and notation
Let us consider the following indefinite quadratic programming problem:

Minimize  f(x) =xT Ox +c’x

(P) Subjectto 0K x; <1, i=12,...,n (18)

and its associated convex programming problem with linear objective function:

n
Minimize  fr(x,y) = ZZ Qijyij + Z Qiiyii +¢'x
i<j i=1

Subjectto (x,y) € QPC.

THEOREM 2.1. Problem(P;) has an optimal solutioiix*, y*) such thatc* is an
optimal solution of( P).

(Pr) (19)
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Proof. It is obvious that any vertex ap P¢ satisfies (6), and that proble(®; )
has an optimal solution among the vertices@P¢. Then, finding an optimal
vertex of (P;) amounts to solve the proble(®). m|

In order to propose valid inequalities farP¢, we will use the following nota-
tion. LetN = {1, 2,...,n}. For anyS C N we define polynomials

Vs(x) =Y xi,

ieS
2\ 2
Vs(x?) =) " xi
ieS

and

Es()= Y. i

i,jeSs, i<j
Moreover, for anys, T € N such thatS N 7T = ¢ let us denote
(S, T)={G,j)|i<jandeithei €S, jeT, orieT, jeS}

Then, we define

Es7r(y) = Z Vij-

(i.))e(S.T)

We note that if(x, y) € QP thenEg 7(y) = Vs(x)Vr(x).
The following lemma plays an important role in this article.

LEMMA 2.2. LetS be a subset oV and¢ be a real number betwedhand |S]|.
Then

—(@+ g% <min{=Vs(x?) | Vs(x) =1, 0< x5 <1, i€S), (20)
whereq is an arbitrary integer ang3 is a number such that
a+ B =t.

Moreover, equality in (20) is established wher= |7].

Proof. We note that the right-hand side of (20) is a concave minimization prob-
lem and has an optimal solution among the vertices, whose objective values are
equal to—(I + r?), where

I=1t] and r=¢t—1.
Also, it is obvious to see

—(I +7?) > —(a + B%)
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for any integer and realB such thatx + 8 =r. |

3. Valid inequalities

Now, we are ready to propose several classes of valid inequalitig®Hor

THEOREM 3.1 (clique type inequality)For any S € N and any integerr (0 <
a < |S]), the following inequality
ala+1)

aVs(x) — Es(y) < >

(21)

is valid for Q P.
Proof.For any(x, y) € QP, letr = Vs(x). Then we have
(Vs =12,
Vs(x?) + 2E5(y) = 2,
2E5(y) = 1% — Vs(x?).

By Lemma 2.2, for any integer and real such thatt+8 = ¢, 2E5(y) is bounded
below by

2E5(y) = 12 — Vs(x®) > 1* — (a + ), (22)
or equivalently, for any integer such that 0< o < |S|, we obtain

2E5(y) = (@ + B)* — (a + ),
=2a(a+pB) —ale+1),
=2aVs(x) —a(a + 1),

which completes the proof. O

In [16], Padberg shows that for ary € N with S| > 3 and any integer
a, 1 <o < |S|— 2, inequalities (21) define facets of BQP. The idea of our proof
can be applied for BQP in the following way. Let

@= {(x’y) c RI‘L X Rl‘l(n—l)/2|0< xi < 1’
y; =xx; forall 1<i <j <n). (23)

We note that vectoy does not have elements such that ¢ = 1,... ,n) and
that BQP is contained i@ P. It is straightforward to see that the proof of Theorem
3.1 holds true forQ P as well as forQ P. It should be emphasized that inequalities
(21) are not only valid for the convex hull @ P but also facets for BQP.

More generally, we have the following theorem:
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THEOREM 3.2 (cut type inequality)For any S, T € N suchthatSN7T = ¢ and
integera, the following inequality

+1
Es(y) + Er(y) — Es 1(y) — aVs(x) + (@ + HVr(x) + “(“—2) >0 (24)
is valid for Q P.
We note that inequality (24) includes (21) as a special case Whery.
Proof. For any(x, y) € QP, let
Is = |Vs(x)], rs = Vs(x) — Is
and
It = [ Vr(x)], rr =Vr(x)—Ir.
From (22), we have
2E5(y) = {(Vs(x))? — VE(x) > (s +rs)* — (Is + r5)
and
2Er(y) = {Vr ()Y = VF(x) > U7 +rp)* = Ur + ).
Then, we have the following inequality:
a(e+1)
Es(y)+ Er(y) — Esr(y) —aVs(x) + (. + D Vr(x) + —
o+ 1)
=Es(y)+ Er(y) = Vs(x)Vr(x) —aVs(x) + (. + D Vr(x) + —

1
> 5{(15—17—06)(15—IT—Ol—1+2Vs—2VT)+2VT(1—VS)}-
Letl/ =1I¢— Ir —aandf = —1+ 2rg — 2ry, we define
F(I)=1U+0)+2rr(1—ry).

Since 0< rr,rs < 1, we have—3 < 0 < 1 andry(1 — rg) > 0. Then, it is easy
to see that for any integdrsuch thatr < 0,or7 > 3

F(I) > 0.
When! = 1 we have
F1)=2rs(1—rr) 20
and also wherd = 2

F2 =21-rp)Q+rs)+2rs > 0.
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F(I) is, therefore, nonnegative for any integeiVe have

ale+1)
— =
and the proof is complete. O

Es(y) + Er(y) — Vs(x)Vr(x) — aVs(x) + (¢ + D Vr(x) + 0,

In [16], Padberg shows that forasy T € N suchthatSNT =@, |S| > 1,
and|T| > 2, inequalities (24) define facets of BQP when= |T| — |S|. Also in
[5, 23], inequalities (24) have been introduced by considering the product of two
linear functions below:

I(x) = (Vs(x) = Vr(x) —a)(Vs(x) — Vp(x) —a — 1), (25)

wherew is an arbitrary integer. The nonnegativity &f) is obvious ifx is in-
teger. Expanding (25) and replacimgy; to y;; andx? to x;, we can obtain (24),
which are considered as valid inequalities for BQP. In our proof, however, the same
inequalities can be obtained without using 0-1 properties.

Finally, in Theorem 3.3 and Lemma 3.4 given below, we will introduce two
classes of useful inequalities.

THEOREM 3.3. For anyi € N and realr, the following inequality
Vi — 2rx; +7r2 >0 (26)

is valid for Q P. Moreover, for anyi, j € N such that < j, and anyry, r, € R,
the following inequality

”f)’ii + 722ij — 2r1r2y;j 2 0 (27)

is valid for Q P.
Proof. For anyx; and real € R, the following inequality

(xi —r)?>0

holds. Expanding the left-hand—side and replagifitp y;;, we obtain (26), which
holds true for anyx, y) € QP. Itis easy to show inequality (27) in the same way.
O

Inequalities (26) and (27) are closely related to the positive semidefinite cone
(15). Let

1 x7
[y
and let us consider the determinant ok 2 principal minors which consist of the

first and the'th row of X. We have the following convex sets

{(X’y)lyll_x12>0}’ i:1’2""’n7 (28)
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which includeQ P5PF . We see that for any € R,
Vi — 2rx; +1r2 =0

defines a supporting hyperplane of (28xat= r, y; = r2, and that this hyper-
plane generates inequality (26). Also, the determinant-oRrincipal minors not
containing the first row o define the following convex sets:

(oY) [yieyis —v5 =0, v, yy; >0}, foralli < j. (29)
For anyri, r, € R,
2 2 _
riyii +r3yjj — 2rir2y;; =0

defines a supporting hyperplane of (29)yat= r3, y;; = r2, y;; = rirz, and
generates inequality (27).

Moreover, let(x, y) be a given vector which does not satisfy the positive semi-
definite condition (15), and leX be ann + 1 dimensional square matrix defined
below:

- [1 %
-1 7] (30)
whereY is a symmetric matrix with element;. The following lemma has been

shown.

LEMMA 3.4. If (x,y) ¢ QPSPP then the following inequality separat€s, y)
from Q P5PP.

r[1 x7
v |:x v |V >0, (31)
wherev is an eigenvector associated with a negative eigenvalug. of
Proof. See [20]. O
4. Algorithms

In this section, we describe our algorithms and the results of our numerical exper-
iments. Firstly, we show the details of the cutting plane algorithm. Section 4.1 is
devoted to describe procedures for generating the violated inequalities. We will also
describe strategies for selecting, adding and dropping these violated inequalities.
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4.1. GENERATING CUTTING PLANES

For simplicity, in the rest of this section, let us denote the clique and the cut type
inequality by

ala+1) <

2 <0

1§ (x,y; @) =aVs(x) — Es(y) —
and

I¢7(x,y; @) =— Eg(y) — Er(y) + Es 7 (y) + aVs(x)
—(@+DVr(x) - a(ai;l) <0,
respectively.

In our cutting plane algorithm, we solve (14) as the initial relaxation problem
and repeatedly solve LPs by adding violated linear inequalities until a termination
criterion holds or no cutting planes are found.

Firstly, we use the following procedure to generate violated inequalities for a
given point(x, y).

ProcedureTRI

First enumerate all triples, j, k € N, and generate violated clique type in-

equalities (21) withS| = 3 and o = 1, then enumerate all triples again and

generate violated cut type inequalities (24) With= 1, |T| = 2and o = —1.

We note that it require® (n°) computational time to perform this procedure and
that for each triplei, j, k, we can generate one clique type and three cut type
inequalities. We will refer to these inequalities as ‘triangle inequalities’ in the
remainder of this paper.

If no violated inequalities have been found, we apply the following procedure:

ProcedureDIAG

1. Foralli e N,ify;; < 71.2 then generate inequalities (26) by setting: x;.

2. For all pairsi, j € N, ify;y;; < yl.zj then generate inequalities (27) by
settingr? =5,;, rZ=7,.

3. If some inequalities have been generated, then terminate.

4. LetX be a matrix defined in Lemma 3.4. For all eigenvectomshich are
associated with negative eigenvaluesXf generate inequalities (31).

We call this procedure ‘diag’ since (26), (27) and (31) are the only inequalities that
contain ‘diagonal’ variablesy;.

Finally, we perform several heuristic procedures for detecting violated inequali-
ties. In these heuristics, starting from randomly generated triangle inequalities with
three indices, we try to find violated inequalities by increasing the cardinalify of
or T one by one.

Since inequalities (21) and (24) have a lot of freedom, SeZ and «, we
restrict clique and cut type inequalities within= 1 anda = —1, respectively.
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ForeachS ¢ N andi € N\ S, we define

g =15, @7 D —I{® 7,1
=X; — Zylj‘
Jjes

Also, foranyS, T c N, SNT =@andi € N\ (SUT), define

si = 5Ly r &5, =D — {7 (X, 5, 1)
= —X; — Zyij + Zyij
jes jeT

and

li = lg‘t,TU{i}(f’ y’ _1) - lg’t,T(f’ y7 _1)
= Zyij - Zyij‘
jes JjeT
Then, we have the following heuristics:
ProcedureHEU1
Execute the following times.
1. Generate a subsétc N such thatS| = 3 randomly.

2. Letg;« 1= i?zv%)s( 8i.

3. If g;« <0, then quit. Otherwise lef := S U {i*}.
4. Generate (21) witl§ anda = |Vs(x)]. If S # N, go to 2. Otherwise quit.

ProcedureHEU2
Execute the following times.
1. Generate subsets T C N such that|S| = 1, |T| =2andSNT = ¢

randomly.
2. Lets;» ;= max s; andy ;= max . If s;« > 1+, goto 3. Otherwise
ieN\(SUT) keN\(SUT)
go to 4.

3. If s;+ < 0, then quit. Otherwise lef := S U {i*}. Goto 5.

4. If i« < 0, then quit. Otherwise lef := T U {k*}. Go to 5.

5. Generate (24) witls, T anda = |[Vs(x) — V7 (x)]. If SUT # N, goto
2. Otherwise quit.

At the last steps in these heuristics, weeet |Vs(x)| ora = | Vs(x) — Vr(x)],
which seems to work better.
Moreover, we introduce quadratic functions to takimto consideration. Let

1
g§ (. y) = S{Vs(HVs(0) — 1} = Es() (32)
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and
g5+ (x,y) = q§ (x, ¥) + 4§ (x, ¥) + Es 7 () — Vs(x) V7 (x), (33)

which can be considered as the lower bounds/§ax, y ; o) andl§' ;. (x,y; a),
respectively, in the following sense.

LEMMA4.1. Foranyx,yandS C N, ifa = [ Vs(x)], then
g5 (v, y) <I§(x, 35 @), (34)
Also, foranyx, yandS, T C N SNT =0, ifa = | Vs(x) — Vr(x)], then
g5 r(x,y) <I§7(x, y: ). (35)

Proof. It is obvious to see that

. 1
q&xw—@awmn=;wa%ﬂn%m—a—u<o

ifa=|Vs(x)].
Also

g7 (x,y) =1 (x, y: )
1
= Q{VS(X) —Vr(x) —a}{Vs(x) = Vr(x) —a—1} <0

if o =|Vg(x) — Vr(x)]. O

Lemma 4.1 gives sufficient conditions for generating the cutting planes. For
instance, given a vectdr, y), if we find S € N such that

q§ x5 >0,
then we can generate the clique inequality
1§ (x,y; LVs@)]) <0,

which cuts off(x, y).
Then,g;, s; ands; in ProcedureHEU1 and ProcedureHEUZ2 can be replaced
by g/, s; andz/, respectively, in the following way. Let
g = a5y, D — g &

1_ _ - __
= Exi(xi -1 — Z(yij — XiX;),
jes
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whereS ¢ N andi € N\ S. Also, let
S; = ‘I;tu{,‘}j(f’ y) - QEIT(Y’ y)

1
= ST 1)~ ) (O —XT) + )y ~TX))

jes jeT
and
til = C];{Tu{i}(f, y) — QE{T(E, y)

1_ _ - __ _
= Exi(xi -1+ Z(yij —XiXj) — Z()’ij —XiX;),

jes jeT

whereS, T C N, SNT =@andi e N\ (SUT).

4.2. COMPUTATIONAL EXPERIMENTS

Test problems are generated as follows. Each of the coeffio@ntd < i < j <
n) andc; (1 < i < n) of the objective function in{P) are set as integers randomly
distributed betweer-100 and 100 with density. We generate ten problems for
eachn andd. Table 4.1 displays the average number of positive (pos.), negative
(neg.) and zero eigenvalues @f We can see that most of the randomly generated
matricesQ have full rank and have almost the same number of positive and neg-
ative eigenvalues. Later, we also consider the behavior of our algorithm when the
number of positive and negative eigenvalues are different. All problems are solved
on DEC Alpha (CPU 21164-300MHz), and we use the CPLEX 4.0 library as an
LP solver.

We add the violated inequalities to the LP if the Euclidean distance between the
point (x, ¥) and the cut defining hyperplane exceédwhich is first ses = 101
and dynamically changed from one iteration to the next. We terminate the cutting
plane algorithm if no cutting plane is found with= 10-° or the following relative
error criterion holds witle = 1074 :

J&) —elfDI < fLlx,y), (36)

where (x,y) is an optimal solution of the current LP aridis the best feasible
solution obtained so far. We call an e-optimal solution. We note that since
is a feasible solution of the original proble@®), f(x) gives an upper bound of
(P). After each LP has been solved, we try to update the best feasible solution
x by usingx. We also provide a procedure for deleting inequalities whose slacks
are greater than 16 when the total number of inequalities added to the initial LP
exceeds 5000.

First, we show a result with = 20,30 in Table 4.2. In the tabley denotes the
number of problems which are solveddaptimality. For those which terminate



Table 4.1. The number of positive, negative, and zero eigenvalug3 af different densities

n =20 n =30 n =40 n =50 n =60 n=70 n =80
d pos. neg. zero pos. neg. zero pos. Neg. zero pos. Neg. zero pos. Neg. zero pos. nNeg. zero pos. neg. zero
01 79 80 4.1 135 136 29 19.4 185 21 25.0 25.0 0.0 29.8 29.8 0.4 34.6 354 0.0 39.5 405 0.0
0.2 95 10.1 04 150 15.0 0.0 199 20.1 0.0 25.2 246 0.2 29.9 30.1 0.0
0.3 9.7 10.3 0.0 15.0 15.0 0.0 196 204 0.0 25.2 24.8 0.0 29.7 30.3 0.0
0.4 10.0 10.0 0.0 149 151 0.0 19.9 20.1 0.0 24.8 25.2 0.0
0.5 10.0 10.0 0.0 145 155 0.0 19.8 20.2 0.0 25.1 249 0.0
0.6 9.8 10.2 0.0 14.6 154 0.0 19.6 20.4 0.0
0.7 101 99 0.0 145 155 0.0 19.6 20.4 0.0
0.8 9.9 10.1 0.0 15.0 15.0 0.0 20.3 19.7 0.0
0.9 10.0 10.0 0.0 148 152 0.0 20.4 19.6 0.0
1.0 9.9 10.1 0.0 149 151 0.0 20.0 20.0 0.0

ot

3ICNd "L ANV VINICVA 'A
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Table 4.2. Result of the cutting plane algorithm fer= 10~

n =20
ERRORx 104 CuT CUT(DIAG) CUT(HEU) TIME
d m ave. max. ave. max. ave. max. ave. max. ave. max.
01 9 9.80 9.80 26.4 224 14.0 112 0.0 0 20 4.1
0.2 9 462 4.62 52.0 202 20.0 99 0.0 0 21 2.4
03 10 - - 448 144 6.0 31 0.0 0 21 2.9
04 10 - — 147.0 389 14.0 52 0.0 0 22 2.8
05 9 223 223 3658 609 15.1 58 0.0 0 23 3.0
06 10 -— — 390.6 648 244 81 0.0 0 24 3.2
0.7 10 - — 6419 731 29.7 81 0.0 0 26 3.8
08 10 - — 692.8 839 33.0 190 0.0 0 27 4.4
09 9 298 298 7384 863 59.8 132 15 15 2.8 5.6
1.0 10 - — 616.7 694 251 70 0.0 0 26 4.1
n =30
ERRORx10~% CuUT CUTDIAG) CUTHEU) TIME
d m ave. max. ave. max. ave. max. ave. max. ave. max.
01 10 - - 20.6 74 20.0 68 0.0 0 175 246
0.2 10 - - 25.0 130 119 76 0.0 0 185 223
03 10 - — 5855 1061 38.5 118 0.0 0 20.3 240
04 10 - — 12309 1411 25.8 156 0.0 0 20.0 235
05 10 - — 15825 1878 45.9 107 0.0 0 21.8 25.6
0.6 10 -— — 2125.7 2546 52.0 166 2.7 27 28.2 51.6
0.7 10 - — 2496.0 3025 74.2 176 0.2 2 313 712
08 9 140 1.40 2572.4 2693 63.6 183 0.0 0 249 311
09 10 - — 2555.0 4209 53.0 264 7.9 79 456 2574
1.0 9 3.79 3.79 2147.4 2288 71.7 152 0.0 0 311 537

with failure to generate cutting planes, ERROR gives the relative error;

J&®) - fi(x,) (37)
|f (D) ‘

Also, CUT denotes the number of the total generated cutting planes, IBE()

and CUTHEU) denote the total number of generated cutting planegrbgedure

DIAG andprocedureHEU, respectively, and TIME denotes the CPU time in sec-

onds. Moreover, ave. and max. denote the average and the maximum, respectively.
The table shows that all problems are solved te 10~ optimality, and that

most of the problems are solved by the triangle and diagonal inequalities. It seems

that these inequalities play an important role in the polyhedral relaxatighrof
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Table 4.3.Result of the cutting plane algorithm with heuristics éoe 10~4

n =20
ERRORx 104 CuT CUT(DIAG) CUT(HEU) TIME

d m ave. max. ave. max. ave. max. ave. max. ave. max.
01 9 1.18 1.18 242 224 124 112 0.0 0 25 5.1
0.2 10 - - 509 202 18.9 99 0.0 0 27 3.6
03 10 - - 448 144 6.0 31 0.0 0 28 34
04 10 - — 147.0 389 14.0 52 0.0 0 29 35
05 10 - — 363.2 598 125 43 0.0 0 28 3.5
0.6 10 -— — 389.3 648 239 80 0.0 0 31 4.1
0.7 10 - — 640.7 731 294 81 0.0 0 33 4.6
08 10 - — 692.8 839 33.0 190 0.0 0 35 5.6
09 10 - — 726.4 822 50.0 104 0.0 0 34 4.7
1.0 10 - — 616.2 690 24.6 69 0.0 0 34 4.7

n =30
ERRORx10~% CuUT CUTDIAG) CUTHEU) TIME

d m ave. max. ave. max. ave. max. ave. max. ave. max.
01 10 - - 17.4 74 16.8 68 0.0 0 21.2 26.7
0.2 10 - - 23.3 130 119 76 0.0 0 216 24.6
03 10 - — 573.1 1014 38.5 118 0.0 0 245 29.1
04 10 - — 12254 1411 20.3 101 0.0 0 239 27.6
05 10 - — 1580.3 1878 43.7 106 0.0 0 26.2 294
0.6 10 -— — 2117.1 2504 49.5 159 5.8 58 31.7 51.7
0.7 10 - — 24735 2995 72.0 161 0.0 0 343 704
08 10 - — 2568.4 2689 59.6 147 0.0 0 28.7 351
09 10 - — 2557.9 4238 53.0 264 104 104 48.4 249.1
1.0 9 3.79 3.79 2143.4 2288 68.8 152 0.0 0 333 493

We also see that the performance of the cutting plane algorithm depends on the
density of 0 andc as well asn. For dense problems, many cutting planes are
required to achieve atroptimal solution.

In addition to the cutting plane procedure, we also implement local search pro-
cedures to update the best feasible solutioAfter each LP has been solved, we
try to improve the solution by a variant of active set strategy [4] usiag an initial
point. Furthermore, we implement a multiple start local search procedure to get an
initial feasible solution before starting the cutting plane procedure.

Table 4.3 gives results for the same problems as in Table 4.2. From these tables,
we see that several unsolved instances in Table 4.2 can be terminated successfully
with a good feasible solution generated by the local search procedures. Thus, our
cutting plane algorithm gives a sufficiently tight lower bound which guarantees an
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Table 4.4.Result of the cutting plane algorithm with heuristics éoe 104

n =40
CUT CUTDIAG) CUT(HEU) TIME
d m ave. max. ave. max. ave. max. ave. max.
0.1 10 773 577 176 97 Qo 0 229 406
0.2 8 9570 2363 569 216 02 2 295 440
0.3 10 19272 2253 355 121 Q0 0 311 558
0.4 10 34828 8467 881 506 178 178 1568 12547
05 10 3854 4440 437 118 Q0 0 388 486
0.6 10 57573 11144 1122 576 361 235 3308 22154
0.7 10 5194 6729 540 188 63 63 829 2947
08 10 58443 8145 127 301 390 221 1876 5328
09 10 56465 9960 1428 475 275 188 2821 16338
1.0 10 55918 8318 1553 301 237 146 234 7171
n =50
CUT CUTDIAG) CUT(HEU) TIME
d m ave. max. ave. max. ave. max. ave. max.
0.1 10 806 309 470 208 Q0 0 8Q0 1246
02 10 185&4 2346 502 127 Q0 0 902 1289
03 10 36763 4224 54 134 Q0 0 9Q0 1243
04 10 56398 10375 a@ 299 144 144 3714 23671
05 10 6587 9371 108 233 485 272 5738 15538
n =60
CUT CUTDIAG) CUT(HEU) TIME
d m ave. max. ave. max. ave. max. ave. max.
0.1 10 2875 1646 180 84 Qo 0 1516 2261
02 10 358% 5899 5% 195 15 15 2465 6505
03 10 58801 8212 103% 282 12 72 4645 17441
n=70
CUT CUTDIAG) CUT(HEU) TIME
d m ave. max. ave. max. ave. max. ave. max.
0.1 10 1518 3956 416 135 Q0 0 3280 5093
n =80
CUT CUTDIAG) CUT(HEU) TIME
d m ave. max. ave. max. ave. max. ave. max.
01 10 21231 4145 693 234 Q0 0 6519 11040

*One instance terminates= 1.75x 10~4 and the other terminates= 10.79x 104,

167
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Table 4.5.Results by Hansen et al. [11]

n
d 30 40 50 60 70 80

10 0.13 0.36 114 9232 81.13 488.06
20 0.70 8.90 132.30
30 3.39 143.08

40 9.12
50 50.85
60 116.26
70 160.94

Table 4.6. Result of the cutting plane algorithm fer= 104

n =40
CuUT CUTDIAG) CUTHEU) TIME
nt/n~ ave. max. ave. max. ave. max. ave. max.

35/5 43482 5357 585/ 1160 00 0 1864 8404
30/10 46931 5471 378 1003 00 0 989 2528
25/15 48715 5190 1874 286 QO 0 610 1083
20/20 45283 4982 330 168 00 0 352 509
15/25 43629 5069 151 69 Q0 0 279 461
10/30 39174 5000 00 0 00 0 234 253

00 0

5/35 15956 4546 0 00 195 229

e-optimality. Finally, we show results with up i0= 80 in Table 4.4. We see that
our algorithm can generate aroptimal solution in a reasonable computational
time whenQ is sparse.

To our knowledge, only a few papers report numerical experiments for the
indefinite problem(P). Table 4.5 shows the results of the branch and bound al-
gorithm by Hansen et al. presented in [11]. They use similar randomly generated
test problems, and show the average CPU time of ten problems in each case. Since
the computation environment used in their experiments is different, we can not
compare them against ours directly. However, the computational effort increases
dramatically as the density of the matr@ increases. It is obvious to see that
moderate density problems with 40 or 50 variables would be out of reach by their
algorithm.

Finally, we show the behavior of our algorithm under different eigenvalue struc-
tures of the matrixQ. Let AAAT be a diagonalized decomposition of the randomly
generated fully dense matri@, whereA is an orthogonal matrix and is a diago-
nal matrix. Changing the matria, we redefine the matri0 asQ = AA’AT,
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where A’ is also a randomly generated diagonal matrix which magositive
elements and ™~ negative ones. Thug) has also:™ positive eigenvalues angd"
negative ones. We note that the matthalso becomes dense.

Table 4.6 shows the results when= 40 ande = 10~*. We also solve ten
problems in each case, and all these problems are solveaptimality. Obvi-
ously, when the number of positive eigenvalues increases, we need to add many
inequalities associated with the positive semidefinite condition (15). Therefore,
incorporating the semidefinite condition explicitly, i.e., solving the positive semi-
definite problem (16) instead of the LP, we could improve the performance of our
algorithm. A similar attempt has been made by Helmberg and Rendl [13] for the
0—1 quadratic problem.

5. Conclusions

We have formulated the indefinite quadratic problem with box constraints as a
convex minimization problem with a linear objective function. It has been shown
that several classes of facet defining inequalities for BQP can also be vatid¥or

Our numerical results indicate that the positive definite constraints (15) and the
only triangle inequalities provide a fairly tight polyhedral relaxation@®. It is
worth noting that our cutting plane algorithm will also work well as a bounding
procedure in a branch and bound framework, which is now underway.

When the density 0 increases, it seems that we should take more complicated
clique or cut type inequalities into consideration efficiently. We will need to devise
more sophisticated procedures for generating and selecting good inequalities. We
believe that our polyhedral approach could be an efficient method for nonconvex
guadratic problems.
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