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Abstract. We apply a linearization technique for nonconvex quadratic problems with box con-
straints. We show that cutting plane algorithms can be designed to solve the equivalent problems
which minimize a linear function over a convex region. We propose several classes of valid inequali-
ties of the convex region which are closely related to the Boolean quadric polytope. We also describe
heuristic procedures for generating cutting planes. Results of preliminary computational experiments
show that our inequalities generate a polytope which is a fairly tight approximation of the convex
region.
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1. Introduction

We consider the following nonconvex quadratic programming problem with box
constraints:

(P )

∣∣∣∣ Minimize f (x) = xTQx + cT x
Subject to 06 xi 6 1, i = 1,2, . . . , n,

(1)

wherexT = (x1, x2, . . . , xn) is a variable vector of sizen, Q is a symmetricn× n
matrix, andc is a vector of sizen. If f is a convex function, problem(P ) is an easy
convex minimization problem, and a lot of standard convex nonlinear algorithms
can be applied for solving(P ). Also, if f is a concave function, i.e., matrixQ
is negative semidefinite, it is well known that problem(P ) has a globally optimal
solution at an extreme point of box constraints. Problem(P ) is, in the concave
case, equivalent to the following quadratic zero-one program:

(IQ)

∣∣∣∣ Minimize xTQx + cT x
Subject to xi ∈ {0,1}, i = 1,2, . . . , n.

(2)

Many methods have been proposed for solving(IQ). Among them are branch
and bound algorithms [14, 17], linear relaxation methods and/or cutting plane
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152 Y. YAJIMA AND T. FUJIE

methods for solving equivalent linear zero-one integer programs or max-cut prob-
lems [2, 5, 16], eigenvalue methods [9, 19], and semidefinite relaxation methods
[13].

In this article, we consider the problem(P ) whenQ is indefinite. From the
complexity point of view, the problem is NP-hard [18]. Thus, it seems that the
problem is one of the simplest but the toughest global optimization problems.

Several methods, in the indefinite case, have been proposed. Coleman and Hul-
bert [7] proposed an efficient algorithm for obtaining a local optimal solution of
the problems. Also, several polynomial time algorithms have been proposed by
Vavasis [26] and Ye [27] for obtaining approximate solutions. Hansen et al. [11]
proposed necessary conditions for optimality for(P ). They also proposed some
kind of active set strategy and solved the problem optimally by branch and bound
methods. Other algorithms can be found in the recent survey of De Angelis et al.
[8] and references therein.

We will propose a polyhedral approach which is closely related to thelin-
earization techniqueproposed by Padberg [16] for solving(IQ). He linearizes
the quadratic termsxixj by introducing new variables

yij = xixj , for all 16 i < j 6 n. (3)

It is easy to verify that problem(IQ) is equivalently reduced into the following
linear zero-one integer programming problem:

Minimize 2
∑
i<j

Qij yij + cT x
Subject to yij 6 xi, yij 6 xj , xi + xj − 16 yij ,

xi ∈ {0,1}, i = 1,2, . . . , n,
yij ∈ {0,1}, for all 16 i < j 6 n,

(4)

whereQij is a (i, j)-element of matrixQ. We note thatx2
i = xi if xi ∈ {0,1}.

Therefore, without loss of generality, we can replace the quadratic termsx2
i with

xi for all i = 1,2, . . . , n, and assumeQ be a zero-diagonal matrix. He considers
the convex hull of zero-one vectors satisfying the constraints of (4), i.e.,

conv{(x, y) ∈ Rn × R n(n−1)
2 | xi ∈ {0,1}, yij = xixj for all 16 i < j 6 n}.

(5)

Padberg calls this the Boolean quadric polytope (BQP) and proposes three families
of facets, named the clique-inequality, the cut-inequality and the generalized cut
inequality. Also, Simone [25] shows that the BQP is the image of the cut polytope
(CP) defined by [3], and that the polyhedral structure of CP can be easily reduced
to those of BQP. See also [5, 6] for further details.

In this article, we will apply the same linearizing technique to the case whenxi ’s
are continuous between 0 and 1. To linearize the problem, we will also introduce
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new variables

yij = xixj , for all 16 i 6 j 6 n, (6)

and consider the setQP and its convex hullQPC defined below:

QP ={(x, y)∈Rn×R n(n+1)
2 |06xi61, yij =xixj for all 16 i6j6n},

(7)

QPC = conv{ QP }. (8)

Here, the difference betweenQPC and BQP must be noted. Firstly,QPC has
additional variablesyii (i = 1,2, . . . , n)which correspond tox2

i .Sincexi takes an
arbitrary value between 0 and 1,x2

i can not be replaced byxi.Secondly,QPC is not
a polyhedral set any longer. Vertices ofQPC consist of not only 0–1 vertices but
also non-integer vertices. However, ignoring these additional variablesyii , any 0–1
vertices ofQPC are identical to those of BQP.QPC can be viewed as a continuous
generalization of BQP.

In a series of articles [21, 22, 24], Sherali et al. developed the same linearization
method for solving general nonconvex quadratic programming problems. Their
idea can be viewed as a technique for approximatingQP. They take all possible
pairwise products of the original inequalities

xi > 0, i = 1,2, . . . , n
−xi > −1, i = 1,2, . . . , n,

(9)

and generate the following linear inequalities

xi + xj − 16 yij , (10)

06 yij , (11)

yij 6 xi, (12)

yij 6 xj , (13)

by replacing the quadratic termxixj with yij for all 16 i 6 j 6 n. Let us define

QP 0 = {(x, y) | (x, y) satisfies (9) through (13)},
and consider the following linear programming problem:

Minimize

2
∑
i<j

Qij yij +
n∑
i=1

Qiiyii + cT x | (x, y) ∈ QP 0

 , (14)

whereQij is a(i, j) element of matrixQ. SinceQP 0 ⊇ QP, linear programming
problem (14) gives a lower bound for(P ).
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Recently, some authors [10, 20] propose semidefinite relaxations for general
nonconvex quadratic problems. Let us denote the positive semidefiniteness of a
matrixA by A � 0. They approximate (6) by the positive semidefinite condition
Y − xxT � 0, or equivalently,[

1 xT

x Y

]
� 0, (15)

whereY is a symmetric matrix with elementsyij . Therefore, a lower bound for(P )
is obtained by solving the semidefinite programming problem:

Minimize

2
∑
i<j

Qij yij +
n∑
i=1

Qiiyii + cT x | (x, y) ∈ QPSDP
 , (16)

where

QPSDP = QP 0 ∩ {(x, y) | (x, y) satisfies (15)}. (17)

Many algorithms [1, 12, 15, etc.] have been proposed for solving (16).
In this article, we will propose several classes of valid linear inequalities of

QP. It will be shown that a polytope defined by our inequalities is tighter than that
defined by (9) through (13). We also propose cutting plane algorithms employing
these inequalities as cutting planes. The article is organized as follows. In Section
2, we introduce notation and some basic results. Section 3 is devoted to propose
several classes of valid inequalities ofQP.We also show that these inequalities are
closely related to the facets of BQP as well as the positive semidefinite inequality
(15). In Section 4, we describe cutting plane algorithms for solving(P ). We also
describe heuristic procedures for generating cutting planes. Results of preliminary
computational experiments show that our inequalities generate a polytope which is
a fairly nice approximation ofQP.

2. Basic results and notation

Let us consider the following indefinite quadratic programming problem:

(P )

∣∣∣∣ Minimize f (x) = xTQx + cT x
Subject to 06 xi 6 1, i = 1,2, . . . , n

(18)

and its associated convex programming problem with linear objective function:

(PL)

∣∣∣∣∣∣∣
Minimize fL(x, y) = 2

∑
i<j

Qij yij +
n∑
i=1

Qiiyii + cT x

Subject to (x, y) ∈ QPC.
(19)

THEOREM 2.1. Problem(PL) has an optimal solution(x∗, y∗) such thatx∗ is an
optimal solution of(P ).
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Proof. It is obvious that any vertex ofQPC satisfies (6), and that problem(PL)
has an optimal solution among the vertices ofQPC. Then, finding an optimal
vertex of(PL) amounts to solve the problem(P ). 2

In order to propose valid inequalities forQPC, we will use the following nota-
tion. LetN = {1,2, . . . , n}. For anyS ⊆ N we define polynomials

VS(x) =
∑
i∈S

xi,

VS(x
2) =

∑
i∈S

x2
i

and

ES(y) =
∑

i,j∈S, i<j
yij .

Moreover, for anyS, T ⊆ N such thatS ∩ T = ∅ let us denote

(S, T ) = {(i, j) | i < j and eitheri ∈ S, j ∈ T, or i ∈ T, j ∈ S}.
Then, we define

ES,T (y) =
∑

(i,j)∈(S,T )
yij .

We note that if(x, y) ∈ QP thenES,T (y) = VS(x)VT (x).
The following lemma plays an important role in this article.

LEMMA 2.2. Let S be a subset ofN and t be a real number between0 and |S|.
Then

−(α + β2) 6 min{−VS(x2) |VS(x) = t, 06 xi 6 1, i ∈ S}, (20)

whereα is an arbitrary integer andβ is a number such that

α + β = t.
Moreover, equality in (20) is established whenα = btc.

Proof.We note that the right-hand side of (20) is a concave minimization prob-
lem and has an optimal solution among the vertices, whose objective values are
equal to−(I + r2), where

I = btc and r = t − I.
Also, it is obvious to see

−(I + r2) > −(α + β2)
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for any integerα and realβ such thatα + β = t. 2

3. Valid inequalities

Now, we are ready to propose several classes of valid inequalities forQP.

THEOREM 3.1 (clique type inequality).For anyS ⊆ N and any integerα (0 6
α 6 |S|), the following inequality

αVS(x)− ES(y) 6 α(α + 1)

2
(21)

is valid forQP.
Proof.For any(x, y) ∈ QP , let t = VS(x). Then we have

{VS(x)}2 = t2,
VS(x

2)+ 2ES(y) = t2,
2ES(y) = t2− VS(x2).

By Lemma 2.2, for any integerα and realβ such thatα+β = t, 2ES(y) is bounded
below by

2ES(y) = t2− VS(x2) > t2− (α + β2), (22)

or equivalently, for any integerα such that 06 α 6 |S|, we obtain

2ES(y) > (α + β)2 − (α + β2),

= 2α(α + β)− α(α + 1),

= 2αVS(x)− α(α + 1),

which completes the proof. 2

In [16], Padberg shows that for anyS ⊆ N with |S| > 3 and any integer
α, 1 6 α 6 |S| − 2, inequalities (21) define facets of BQP. The idea of our proof
can be applied for BQP in the following way. Let

QP = {(x, y) ∈ Rn × Rn(n−1)/2 |06 xi 6 1,

yij = xixj for all 16 i < j 6 n}. (23)

We note that vectory does not have elements such thatyii , (i = 1, . . . , n) and
that BQP is contained inQP. It is straightforward to see that the proof of Theorem
3.1 holds true forQP as well as forQP. It should be emphasized that inequalities
(21) are not only valid for the convex hull ofQP but also facets for BQP.

More generally, we have the following theorem:
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THEOREM 3.2 (cut type inequality).For anyS, T ⊆ N such thatS ∩ T = ∅ and
integerα, the following inequality

ES(y)+ ET (y)− ES,T (y)− αVS(x)+ (α + 1)VT (x)+ α(α + 1)

2
> 0 (24)

is valid forQP.

We note that inequality (24) includes (21) as a special case whenT = ∅.
Proof.For any(x, y) ∈ QP, let

IS = bVS(x)c, rS = VS(x)− IS
and

IT = bVT (x)c, rT = VT (x)− IT .
From (22), we have

2ES(y) = {VS(x)}2 − V 2
S (x) > (IS + rS)2− (IS + r2

S)

and

2ET (y) = {VT (x)}2 − V 2
T (x) > (IT + rT )2− (IT + r2

T ).

Then, we have the following inequality:

ES(y)+ ET (y)− ES,T (y)− αVS(x)+ (α + 1)VT (x)+ α(α + 1)

2

= ES(y)+ ET (y)− VS(x)VT (x)− αVS(x)+ (α + 1)VT (x)+ α(α + 1)

2

>
1

2
{(IS − IT − α)(IS − IT − α − 1+ 2rS − 2rT )+ 2rT (1− rS)} .

Let I = IS − IT − α andθ = −1+ 2rS − 2rT , we define

F(I) = I (I + θ)+ 2rT (1− rS).
Since 06 rT , rS < 1, we have−3 < θ < 1 andrT (1− rS) > 0. Then, it is easy
to see that for any integerI such thatI 6 0, or I > 3

F(I) > 0.

WhenI = 1 we have

F(1) = 2rS(1− rT ) > 0

and also whenI = 2

F(2) = 2(1− rT )(1+ rS)+ 2rS > 0.
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F(I) is, therefore, nonnegative for any integerI. We have

ES(y)+ ET (y)− VS(x)VT (x)− αVS(x)+ (α + 1)VT (x)+ α(α + 1)

2
> 0,

and the proof is complete. 2

In [16], Padberg shows that for anyS, T ⊆ N such thatS ∩ T = ∅, |S| > 1,
and|T | > 2, inequalities (24) define facets of BQP whenα = |T | − |S|. Also in
[5, 23], inequalities (24) have been introduced by considering the product of two
linear functions below:

l(x) = (VS(x)− VT (x)− α)(VS(x)− VT (x)− α − 1), (25)

whereα is an arbitrary integer. The nonnegativity ofl(x) is obvious if x is in-
teger. Expanding (25) and replacingxixj to yij andx2

i to xi, we can obtain (24),
which are considered as valid inequalities for BQP. In our proof, however, the same
inequalities can be obtained without using 0-1 properties.

Finally, in Theorem 3.3 and Lemma 3.4 given below, we will introduce two
classes of useful inequalities.

THEOREM 3.3. For anyi ∈ N and realr, the following inequality

yii − 2rxi + r2
> 0 (26)

is valid forQP. Moreover, for anyi, j ∈ N such thati < j, and anyr1, r2 ∈ R,
the following inequality

r2
1yii + r2

2yjj − 2r1r2yij > 0 (27)

is valid forQP.
Proof.For anyxi and realr ∈ R, the following inequality

(xi − r)2 > 0

holds. Expanding the left–hand–side and replacingx2
i to yii , we obtain (26), which

holds true for any(x, y) ∈ QP. It is easy to show inequality (27) in the same way.
2

Inequalities (26) and (27) are closely related to the positive semidefinite cone
(15). Let

X =
[

1 xT

x Y

]
,

and let us consider the determinant of 2× 2 principal minors which consist of the
first and theith row ofX.We have the following convex sets

{(x, y) | yii − x2
i > 0}, i = 1,2, . . . , n, (28)
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which includeQPSDP . We see that for anyr ∈ R,
yii − 2rxi + r2 = 0

defines a supporting hyperplane of (28) atxi = r, yii = r2, and that this hyper-
plane generates inequality (26). Also, the determinant of 2×2 principal minors not
containing the first row ofX define the following convex sets:

{(x, y) | yiiyjj − y2
ij > 0, yii , yjj > 0}, for all i < j. (29)

For anyr1, r2 ∈ R,
r2
1yii + r2

2yjj − 2r1r2yij = 0

defines a supporting hyperplane of (29) atyii = r2
2, yjj = r2

1, yij = r1r2, and
generates inequality (27).

Moreover, let(x, y) be a given vector which does not satisfy the positive semi-
definite condition (15), and letX be ann + 1 dimensional square matrix defined
below:

X =
[

1 xT

x Y

]
, (30)

whereY is a symmetric matrix with elementyij . The following lemma has been
shown.

LEMMA 3.4. If (x, y) 6∈ QPSDP , then the following inequality separates(x, y)
fromQPSDP .

vT
[

1 xT

x Y

]
v > 0, (31)

wherev is an eigenvector associated with a negative eigenvalue ofX.

Proof.See [20]. 2

4. Algorithms

In this section, we describe our algorithms and the results of our numerical exper-
iments. Firstly, we show the details of the cutting plane algorithm. Section 4.1 is
devoted to describe procedures for generating the violated inequalities. We will also
describe strategies for selecting, adding and dropping these violated inequalities.
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4.1. GENERATING CUTTING PLANES

For simplicity, in the rest of this section, let us denote the clique and the cut type
inequality by

lclS (x, y ; α) ≡ αVS(x)− ES(y)−
α(α + 1)

2
6 0

and

lctS,T (x, y ; α) ≡− ES(y)− ET (y)+ ES,T (y)+ αVS(x)
− (α + 1)VT (x)− α(α + 1)

2
6 0,

respectively.
In our cutting plane algorithm, we solve (14) as the initial relaxation problem

and repeatedly solve LPs by adding violated linear inequalities until a termination
criterion holds or no cutting planes are found.

Firstly, we use the following procedure to generate violated inequalities for a
given point(x, y).

ProcedureTRI
First enumerate all triplesi, j, k ∈ N, and generate violated clique type in-
equalities (21) with|S| = 3 and α = 1, then enumerate all triples again and
generate violated cut type inequalities (24) with|S| = 1, |T | = 2and α = −1.

We note that it requiresO(n3) computational time to perform this procedure and
that for each triplei, j, k, we can generate one clique type and three cut type
inequalities. We will refer to these inequalities as ‘triangle inequalities’ in the
remainder of this paper.

If no violated inequalities have been found, we apply the following procedure:

ProcedureDIAG

1. For all i ∈ N , if yii < x
2
i then generate inequalities (26) by settingr = xi.

2. For all pairs i, j ∈ N , if yii yjj < y2
ij then generate inequalities (27) by

settingr2
1 = yjj , r2

2 = yii.
3. If some inequalities have been generated, then terminate.
4. LetX be a matrix defined in Lemma 3.4. For all eigenvectorsv which are

associated with negative eigenvalues ofX, generate inequalities (31).

We call this procedure ‘diag’ since (26), (27) and (31) are the only inequalities that
contain ‘diagonal’ variables,yii .

Finally, we perform several heuristic procedures for detecting violated inequali-
ties. In these heuristics, starting from randomly generated triangle inequalities with
three indices, we try to find violated inequalities by increasing the cardinality ofS

or T one by one.
Since inequalities (21) and (24) have a lot of freedom, i.e.,S, T and α, we

restrict clique and cut type inequalities withinα = 1 andα = −1, respectively.
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For eachS ⊂ N andi ∈ N \ S, we define

gi = lclS∪{i}(x, y,1)− lclS (x, y,1)
= xi −

∑
j∈S

yij .

Also, for anyS, T ⊂ N, S ∩ T = ∅ andi ∈ N \ (S ∪ T ), define

si = lctS∪{i},T (x, y,−1)− lctS,T (x, y,−1)

= −xi −
∑
j∈S

yij +
∑
j∈T

yij

and

ti = lctS,T∪{i}(x, y,−1)− lctS,T (x, y,−1)

=
∑
j∈S

yij −
∑
j∈T

yij .

Then, we have the following heuristics:
ProcedureHEU1

Execute the followingn times.

1. Generate a subsetS ⊂ N such that|S| = 3 randomly.
2. Letgi∗ := max

i∈N\S
gi .

3. If gi∗ ≤ 0, then quit. Otherwise letS := S ∪ {i∗}.
4. Generate (21) withS andα = bVS(x)c. If S 6= N , go to 2. Otherwise quit.

ProcedureHEU2

Execute the followingn times.

1. Generate subsetsS, T ⊂ N such that|S| = 1, |T | = 2 andS ∩ T = ∅
randomly.

2. Letsi∗ := max
i∈N\(S∪T )

si andtk∗ := max
k∈N\(S∪T )

tk. If si∗ > tk∗ , go to 3. Otherwise

go to 4.
3. If si∗ ≤ 0, then quit. Otherwise letS := S ∪ {i∗}. Go to 5.
4. If tk∗ ≤ 0, then quit. Otherwise letT := T ∪ {k∗}. Go to 5.
5. Generate (24) withS, T andα = bVS(x) − VT (x)c. If S ∪ T 6= N , go to

2. Otherwise quit.

At the last steps in these heuristics, we setα = bVS(x)c or α = bVS(x)− VT (x)c,
which seems to work better.

Moreover, we introduce quadratic functions to takeα into consideration. Let

qclS (x, y) =
1

2
{VS(x)}{VS(x)− 1} − ES(y) (32)

jogo462.tex; 27/08/1998; 11:46; p.11



162 Y. YAJIMA AND T. FUJIE

and

qctS,T (x, y) = qclS (x, y) + qclT (x, y) + ES,T (y)− VS(x)VT (x), (33)

which can be considered as the lower bounds forlclS (x, y ; α) and lctS,T (x, y ; α),
respectively, in the following sense.

LEMMA 4.1. For anyx, y andS ⊆ N , if α = bVS(x)c, then

qclS (x, y) 6 l
cl
S (x, y ; α). (34)

Also, for anyx, y andS, T ⊆ N S ∩ T = ∅, if α = bVS(x)− VT (x)c, then

qctS,T (x, y) 6 l
ct
S,T (x, y ; α). (35)

Proof. It is obvious to see that

qclS (x, y) − lclS (x, y ; α) =
1

2
{VS(x)− α}{VS(x)− α − 1} 6 0

if α = bVS(x)c.
Also

qctS,T (x, y) − lctS,T (x, y ; α)
= 1

2
{VS(x)− VT (x)− α}{VS(x)− VT (x)− α − 1} 6 0

if α = bVS(x)− VT (x)c. 2

Lemma 4.1 gives sufficient conditions for generating the cutting planes. For
instance, given a vector(x, y), if we find S ⊆ N such that

qclS (x, y) > 0,

then we can generate the clique inequality

lclS (x, y ; bVS(x)c) 6 0,

which cuts off(x, y).
Then,gi, si and ti in ProcedureHEU1 andProcedureHEU2 can be replaced

by g′i , s
′
i andt ′i , respectively, in the following way. Let

g′i = qclS∪{i}(x, y,1)− qclS (x, y)
= 1

2
xi(xi − 1)−

∑
j∈S
(yij − xixj ),
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whereS ⊂ N andi ∈ N \ S. Also, let

s′i = qctS∪{i},T (x, y)− qctS,T (x, y)
= 1

2
xi(xi − 1)−

∑
j∈S
(yij − xixj )+

∑
j∈T
(yij − xixj )

and

t ′i = qctS,T∪{i}(x, y)− qctS,T (x, y)
= 1

2
xi(xi − 1)+

∑
j∈S
(yij − xixj )−

∑
j∈T
(yij − xixj ),

whereS, T ⊂ N, S ∩ T = ∅ andi ∈ N \ (S ∪ T ).

4.2. COMPUTATIONAL EXPERIMENTS

Test problems are generated as follows. Each of the coefficientsQij (1 6 i 6 j 6

n) andci(16 i 6 n) of the objective function in(P ) are set as integers randomly
distributed between−100 and 100 with densityd. We generate ten problems for
eachn andd. Table 4.1 displays the average number of positive (pos.), negative
(neg.) and zero eigenvalues ofQ. We can see that most of the randomly generated
matricesQ have full rank and have almost the same number of positive and neg-
ative eigenvalues. Later, we also consider the behavior of our algorithm when the
number of positive and negative eigenvalues are different. All problems are solved
on DEC Alpha (CPU 21164-300MHz), and we use the CPLEX 4.0 library as an
LP solver.

We add the violated inequalities to the LP if the Euclidean distance between the
point (x, y) and the cut defining hyperplane exceedsδ, which is first setδ = 10−1

and dynamically changed from one iteration to the next. We terminate the cutting
plane algorithm if no cutting plane is found withδ = 10−6 or the following relative
error criterion holds withε = 10−4 :

f (x̂)− ε|f (x̂)| 6 fL(x, y), (36)

where(x, y) is an optimal solution of the current LP andx̂ is the best feasible
solution obtained so far. We call̂x an ε-optimal solution. We note that sincex
is a feasible solution of the original problem(P ), f (x) gives an upper bound of
(P ). After each LP has been solved, we try to update the best feasible solution
x̂ by usingx. We also provide a procedure for deleting inequalities whose slacks
are greater than 10−6 when the total number of inequalities added to the initial LP
exceeds 5000.

First, we show a result withn = 20,30 in Table 4.2. In the table,m denotes the
number of problems which are solved toε-optimality. For those which terminate
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Table 4.1.The number of positive, negative, and zero eigenvalues ofQ at different densities

n = 20 n = 30 n = 40 n = 50 n = 60 n = 70 n = 80

d pos. neg. zero pos. neg. zero pos. neg. zero pos. neg. zero pos. neg. zero pos. neg. zero pos. neg. zero

0.1 7.9 8.0 4.1 13.5 13.6 2.9 19.4 18.5 2.1 25.0 25.0 0.0 29.8 29.8 0.4 34.6 35.4 0.0 39.5 40.5 0.0

0.2 9.5 10.1 0.4 15.0 15.0 0.0 19.9 20.1 0.0 25.2 24.6 0.2 29.9 30.1 0.0

0.3 9.7 10.3 0.0 15.0 15.0 0.0 19.6 20.4 0.0 25.2 24.8 0.0 29.7 30.3 0.0

0.4 10.0 10.0 0.0 14.9 15.1 0.0 19.9 20.1 0.0 24.8 25.2 0.0

0.5 10.0 10.0 0.0 14.5 15.5 0.0 19.8 20.2 0.0 25.1 24.9 0.0

0.6 9.8 10.2 0.0 14.6 15.4 0.0 19.6 20.4 0.0

0.7 10.1 9.9 0.0 14.5 15.5 0.0 19.6 20.4 0.0

0.8 9.9 10.1 0.0 15.0 15.0 0.0 20.3 19.7 0.0

0.9 10.0 10.0 0.0 14.8 15.2 0.0 20.4 19.6 0.0

1.0 9.9 10.1 0.0 14.9 15.1 0.0 20.0 20.0 0.0
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Table 4.2.Result of the cutting plane algorithm forε = 10−4

n = 20

ERROR×10−4 CUT CUT(DIAG ) CUT(HEU) TIME

d m ave. max. ave. max. ave. max. ave. max. ave. max.

0.1 9 9.80 9.80 26.4 224 14.0 112 0.0 0 2.0 4.1

0.2 9 4.62 4.62 52.0 202 20.0 99 0.0 0 2.1 2.4

0.3 10 − − 44.8 144 6.0 31 0.0 0 2.1 2.9

0.4 10 − − 147.0 389 14.0 52 0.0 0 2.2 2.8

0.5 9 2.23 2.23 365.8 609 15.1 58 0.0 0 2.3 3.0

0.6 10 − − 390.6 648 24.4 81 0.0 0 2.4 3.2

0.7 10 − − 641.9 731 29.7 81 0.0 0 2.6 3.8

0.8 10 − − 692.8 839 33.0 190 0.0 0 2.7 4.4

0.9 9 2.98 2.98 738.4 863 59.8 132 1.5 15 2.8 5.6

1.0 10 − − 616.7 694 25.1 70 0.0 0 2.6 4.1

n = 30

ERROR×10−4 CUT CUT(DIAG ) CUT(HEU) TIME

d m ave. max. ave. max. ave. max. ave. max. ave. max.

0.1 10 − − 20.6 74 20.0 68 0.0 0 17.5 24.6

0.2 10 − − 25.0 130 11.9 76 0.0 0 18.5 22.3

0.3 10 − − 585.5 1061 38.5 118 0.0 0 20.3 24.0

0.4 10 − − 1230.9 1411 25.8 156 0.0 0 20.0 23.5

0.5 10 − − 1582.5 1878 45.9 107 0.0 0 21.8 25.6

0.6 10 − − 2125.7 2546 52.0 166 2.7 27 28.2 51.6

0.7 10 − − 2496.0 3025 74.2 176 0.2 2 31.3 71.2

0.8 9 1.40 1.40 2572.4 2693 63.6 183 0.0 0 24.9 31.1

0.9 10 − − 2555.0 4209 53.0 264 7.9 79 45.6 257.4

1.0 9 3.79 3.79 2147.4 2288 71.7 152 0.0 0 31.1 53.7

with failure to generate cutting planes, ERROR gives the relative error;

f (x̂)− fL(x, y)
|f (x̂)| . (37)

Also, CUT denotes the number of the total generated cutting planes, CUT(DIAG )
and CUT(HEU) denote the total number of generated cutting planes byprocedure
DIAG andprocedureHEU, respectively, and TIME denotes the CPU time in sec-
onds. Moreover, ave. and max. denote the average and the maximum, respectively.

The table shows that all problems are solved toε = 10−3 optimality, and that
most of the problems are solved by the triangle and diagonal inequalities. It seems
that these inequalities play an important role in the polyhedral relaxation ofQP.
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Table 4.3.Result of the cutting plane algorithm with heuristics forε = 10−4

n = 20

ERROR×10−4 CUT CUT(DIAG ) CUT(HEU) TIME

d m ave. max. ave. max. ave. max. ave. max. ave. max.

0.1 9 1.18 1.18 24.2 224 12.4 112 0.0 0 2.5 5.1

0.2 10 − − 50.9 202 18.9 99 0.0 0 2.7 3.6

0.3 10 − − 44.8 144 6.0 31 0.0 0 2.8 3.4

0.4 10 − − 147.0 389 14.0 52 0.0 0 2.9 3.5

0.5 10 − − 363.2 598 12.5 43 0.0 0 2.8 3.5

0.6 10 − − 389.3 648 23.9 80 0.0 0 3.1 4.1

0.7 10 − − 640.7 731 29.4 81 0.0 0 3.3 4.6

0.8 10 − − 692.8 839 33.0 190 0.0 0 3.5 5.6

0.9 10 − − 726.4 822 50.0 104 0.0 0 3.4 4.7

1.0 10 − − 616.2 690 24.6 69 0.0 0 3.4 4.7

n = 30

ERROR×10−4 CUT CUT(DIAG ) CUT(HEU) TIME

d m ave. max. ave. max. ave. max. ave. max. ave. max.

0.1 10 − − 17.4 74 16.8 68 0.0 0 21.2 26.7

0.2 10 − − 23.3 130 11.9 76 0.0 0 21.6 24.6

0.3 10 − − 573.1 1014 38.5 118 0.0 0 24.5 29.1

0.4 10 − − 1225.4 1411 20.3 101 0.0 0 23.9 27.6

0.5 10 − − 1580.3 1878 43.7 106 0.0 0 26.2 29.4

0.6 10 − − 2117.1 2504 49.5 159 5.8 58 31.7 51.7

0.7 10 − − 2473.5 2995 72.0 161 0.0 0 34.3 70.4

0.8 10 − − 2568.4 2689 59.6 147 0.0 0 28.7 35.1

0.9 10 − − 2557.9 4238 53.0 264 10.4 104 48.4 249.1

1.0 9 3.79 3.79 2143.4 2288 68.8 152 0.0 0 33.3 49.3

We also see that the performance of the cutting plane algorithm depends on the
density ofQ and c as well asn. For dense problems, many cutting planes are
required to achieve anε-optimal solution.

In addition to the cutting plane procedure, we also implement local search pro-
cedures to update the best feasible solution,x̂. After each LP has been solved, we
try to improve the solution by a variant of active set strategy [4] usingx as an initial
point. Furthermore, we implement a multiple start local search procedure to get an
initial feasible solution before starting the cutting plane procedure.

Table 4.3 gives results for the same problems as in Table 4.2. From these tables,
we see that several unsolved instances in Table 4.2 can be terminated successfully
with a good feasible solution generated by the local search procedures. Thus, our
cutting plane algorithm gives a sufficiently tight lower bound which guarantees an
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Table 4.4.Result of the cutting plane algorithm with heuristics forε = 10−4

n = 40
CUT CUT(DIAG ) CUT(HEU) TIME

d m ave. max. ave. max. ave. max. ave. max.

0.1 10 77.3 577 17.6 97 0.0 0 22.9 40.6
0.2 8∗ 957.0 2363 56.9 216 0.2 2 29.5 44.0
0.3 10 1927.2 2253 35.5 121 0.0 0 31.1 55.8
0.4 10 3482.8 8467 88.1 506 17.8 178 156.8 1254.7
0.5 10 3856.4 4440 43.7 118 0.0 0 38.8 48.6
0.6 10 5757.3 11144 112.2 576 36.1 235 330.8 2215.4
0.7 10 5196.4 6729 54.0 188 6.3 63 82.9 294.7
0.8 10 5844.3 8145 127.5 301 39.0 221 187.6 532.8
0.9 10 5646.5 9960 142.8 475 27.5 188 282.1 1633.8
1.0 10 5591.8 8318 155.3 301 23.7 146 236.4 717.1

n = 50
CUT CUT(DIAG ) CUT(HEU) TIME

d m ave. max. ave. max. ave. max. ave. max.

0.1 10 80.6 309 47.0 208 0.0 0 80.0 124.6
0.2 10 1856.4 2346 50.2 127 0.0 0 90.2 128.9
0.3 10 3676.3 4224 50.4 134 0.0 0 90.0 124.3
0.4 10 5639.8 10375 90.2 299 14.4 144 371.4 2367.1
0.5 10 6587.6 9371 108.8 233 48.5 272 573.8 1553.8

n = 60
CUT CUT(DIAG ) CUT(HEU) TIME

d m ave. max. ave. max. ave. max. ave. max.

0.1 10 287.5 1646 18.0 84 0.0 0 151.6 226.1
0.2 10 3589.5 5899 59.4 195 1.5 15 246.5 650.5
0.3 10 5880.1 8212 103.6 282 7.2 72 464.5 1744.1

n = 70
CUT CUT(DIAG ) CUT(HEU) TIME

d m ave. max. ave. max. ave. max. ave. max.

0.1 10 1518.5 3956 41.6 135 0.0 0 328.0 509.3

n = 80
CUT CUT(DIAG ) CUT(HEU) TIME

d m ave. max. ave. max. ave. max. ave. max.

0.1 10 2123.1 4145 69.8 234 0.0 0 651.9 1104.0

∗One instance terminatesε = 1.75×10−4 and the other terminatesε = 10.79×10−4.
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Table 4.5.Results by Hansen et al. [11]

n

d 30 40 50 60 70 80

10 0.13 0.36 1.14 92.32 81.13 488.06
20 0.70 8.90 132.30
30 3.39 143.08
40 9.12
50 50.85
60 116.26
70 160.94

Table 4.6.Result of the cutting plane algorithm forε = 10−4

n = 40

CUT CUT(DIAG ) CUT(HEU) TIME

n+/n− ave. max. ave. max. ave. max. ave. max.

35/5 4348.2 5357 585.7 1160 0.0 0 186.4 840.4

30/10 4693.1 5471 379.8 1003 0.0 0 98.9 252.8

25/15 4871.5 5190 187.4 286 0.0 0 61.0 108.3

20/20 4528.3 4982 33.0 168 0.0 0 35.2 50.9

15/25 4362.9 5069 15.1 69 0.0 0 27.9 46.1

10/30 3917.4 5000 0.0 0 0.0 0 23.4 25.3

5/35 1595.6 4546 0.0 0 0.0 0 19.5 22.9

ε-optimality. Finally, we show results with up ton = 80 in Table 4.4. We see that
our algorithm can generate anε-optimal solution in a reasonable computational
time whenQ is sparse.

To our knowledge, only a few papers report numerical experiments for the
indefinite problem(P ). Table 4.5 shows the results of the branch and bound al-
gorithm by Hansen et al. presented in [11]. They use similar randomly generated
test problems, and show the average CPU time of ten problems in each case. Since
the computation environment used in their experiments is different, we can not
compare them against ours directly. However, the computational effort increases
dramatically as the density of the matrixQ increases. It is obvious to see that
moderate density problems with 40 or 50 variables would be out of reach by their
algorithm.

Finally, we show the behavior of our algorithm under different eigenvalue struc-
tures of the matrixQ. LetA3AT be a diagonalized decomposition of the randomly
generated fully dense matrixQ, whereA is an orthogonal matrix and3 is a diago-
nal matrix. Changing the matrix3, we redefine the matrixQ asQ = A3′AT ,
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where3′ is also a randomly generated diagonal matrix which hasn+ positive
elements andn− negative ones. Thus,Q has alson+ positive eigenvalues andn−
negative ones. We note that the matrixQ also becomes dense.

Table 4.6 shows the results whenn = 40 andε = 10−4. We also solve ten
problems in each case, and all these problems are solved toε-optimality. Obvi-
ously, when the number of positive eigenvalues increases, we need to add many
inequalities associated with the positive semidefinite condition (15). Therefore,
incorporating the semidefinite condition explicitly, i.e., solving the positive semi-
definite problem (16) instead of the LP, we could improve the performance of our
algorithm. A similar attempt has been made by Helmberg and Rendl [13] for the
0–1 quadratic problem.

5. Conclusions

We have formulated the indefinite quadratic problem with box constraints as a
convex minimization problem with a linear objective function. It has been shown
that several classes of facet defining inequalities for BQP can also be valid forQP .
Our numerical results indicate that the positive definite constraints (15) and the
only triangle inequalities provide a fairly tight polyhedral relaxation ofQP. It is
worth noting that our cutting plane algorithm will also work well as a bounding
procedure in a branch and bound framework, which is now underway.

When the density ofQ increases, it seems that we should take more complicated
clique or cut type inequalities into consideration efficiently. We will need to devise
more sophisticated procedures for generating and selecting good inequalities. We
believe that our polyhedral approach could be an efficient method for nonconvex
quadratic problems.
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